IFB & !ILS

Digitalization as enabler of successful system integration

Increasing design quality while reducing development time? An example FireSAT mission.
Felix Loser MSc !, Dr. Marius Riestenpatt gen. Richter !, Dr. Stephan Rudolph 2

TIILS mbH, Leinfelden, Germany, felix.loeser@iils.de, 2 Institut flr Flugzeugbau, Universitat Stuttgart, Stuttgart, Germany, rudolph@ifb.uni-stuttgart.de

Integrating satellite subsystems into a consistent system design is one of the biggest bottlenecks in current day-to-day
engineering. As system design and mission scope mature over the development cycle, individual subsystems or components
have to be redesigned to fulfill the more defined needs of the system. These redesigns are time-intensive and expensive. To
overcome this challenge, graph-based design languages enable engineers to formalize their design knowledge into a machine
executable form. Each system, subsystem and component can be automatically designed, meaning that a re-design is just an

automated re-execution of a given design language. Thus, system integration is transformed into a process of automatically
updating subsystems until they align with the overall system requirements.

Mission Definition Wire Harness
Mission Definition Payload Design Each component has a power demand and generates data to be processed. The wire
¢ Goal — Fire detection » Accuracy - Detection within 1 km harness provides the necessary connection between components and power supply /
* Payload — Infrared Camera e Resolution —20to 30 m data processing. Utilizing a generic routing design language, the connectors, fixings
e Lifetime — 5 year mission Orbit and cables can be dynamically defined and the wire harness automatically generated.

o Altitude — 700 km
* Inclination — 55°

Spacecraft Ground Track

Mission requirements mainly impact the | i g
payload design and orbit choice. They are e oy Bamsii oy
interconnected, e.g. a camera’s focal e o
length depends on the resolution and e AN § NS W § [T |
distance to target. Further requirements
SUCh as de—orbit ManEuvers and miSSioy \\Resolution: 30 m Resolution: 25m Resolution: 20 m
" 111 life-time impact further SUbsyStemS. Total cable length: 97.1 m Total cable length: 92.4 m Total cable length: 116.8 m
System and Component Design Piping and Propulsion System
System design is a highly interdependent process, resulting in many redesigns. The propulsion system provides the necessary Av to perform orbital maneuvers, e.g.
While traditional manual redesigns are time-intensive and costly, automated the required de-orbit maneuver at mission end-of-life. The system shown below is a
system designs provide quick results with consistent quality, reducing design blow-down bipropellant system with helium as pressurant, hydrazine as fuel and

margins and saving costs. nitric oxide as oxidizer. To fit the tanks and pipes within the satellite bus, some

. \ components’ positions have been adjusted.
A g V ‘f ﬁ .-\f .‘ : ‘]'»:'= 1“\ “‘
. “ |
|

Varying number of solar panels depending on required power Reaction wheels and Magnetorquers

Components are either chosen from a predefined list or sized based on symbolic

equations. Automated component design enables quick processing of updated
system requirements.

Structural Integration

SensorOptics{#29}.pixelPerSecond -
SensorOptics{#29}.integrationTime -
SensorOptics{#29}.apertureDiameter -
SensorOptics{#29}.alongTrackPixelPerSecond -

SensorOptics{#29}.focalLength -
SensorOptics{#29}.crossTrackPixelINumber -

_
Integrating components into the structure leads to regular subsystem redesigns. As SensorOptics{#29;.operatingWavelength - 2
the size of the satellite bus increases to accommodate the other systems’

Fomponeqts, Fhe amount of solar panels decrease; as each individual Pane Evaluating design decisions enables the improvement of future designs and
increases in size. The larger satellite bus also requires more powerful reaction

heel ting in furth ¢ fic radesi providing higher quality results. Heatmaps are a visual form of sensitivity analysis,
&ee > TESUILING 1N TUTIRET altomatic Tedesigns. / wwing a comprehensive visual analysis of interacting design parameters. /

Evaluation

Graph-based Design Languages

The results presented above have been achieved with graph-based de5|gn Ianguages developed and executed with the Design Compiler DC43. c/

Panel extensionPaneMidth: Unitjm] = 500{mm]
“ﬁ T 10T S D S DD SE LI ST 'panelsystem:SolarArray | 'panelsystem:SolarArray |
aaaaaaaaaa | cell’rypel celltypel A \M’ /,//C‘ ‘
‘panelsystem-SolarArray | ‘;\l,
Eiilﬂi,"fp'»ﬁ‘.ﬂ;.d?ﬁ iy:;z:,ﬂanam " [snlarcell:SDIarCeID i::SolarCeIITripIeJunctiﬂn;i ’ J'\‘\:\g‘
| panelLength = panelLength ’ﬂ;,:':
E[ExtensionPanel] [BodyPanel] [SolarCell] oppositePanellf[FlapPanel] \ i e i) - S ,’/
“ie;t?i'lsionPanels j?§dﬁPanel ‘celltype [Itjapganels o . .
" " “ Rules as graph transformations define the design language syntax.
Classes are instantiated and added to the design graph.) [BodyPaneii2)
= ~ e BB
SolarArray * ? solararray
— panels[1] ! :FlapPanel{#4}
= totalArea : m? D oo [:SolarArray {#1}]I olararray | eight = 0.01[m]
= bodyPanelWidth : , totalArea = 0.54[m?] area = 0.2[m?]
_ ezieis?onnepar:mwmr:h ‘m O—)Caxmm PO‘[’_Y_]erSYStem>—>(createPaneISystechreateSiIiconCelD{createBodyPaneD—>@ bodyPanelWidth = 0.35[m] panels[2] (m
extensionPanelWidth = 0.5[m] height = 0.01[m] _
= panelLength : m panelLength = 0 4[m] flapPanels[0] area = 0.2[m7] oppositePanel
= powersystem.produced Power = celltype.speci ficPower - total Area solaramay SolarCeliSiicon(#3)
:SolarCellSilicon
= total Area = Z{panef s.area) powersystem.producedPower < powersystem.requiredPower efficiency = 0.148
) | y solarConstant = 1358.0[W/m?]
celltype _ _
J _spemﬁcPower = 154.758[W/m2]
UUUUU ystarn (inherentDegredation = 0.77)
[POWEI‘SYS'[EITI] J’(repIaceSoIarCeIIWithSiIicon}@ teExtensionPanel B -
O_)(replaceSOIarce”WithSingleJunCﬁoD_><?>—>(replaceSoIarCeIIWithTrippIeJunctiorD-’@ (Creae e powersystem -rzgﬁgiiijgi?—'om]]
é solararray producedPower = 83.5691 [W]}
Ontologies as Class Diagrams provide Production Systems as Activity Diagrams define design logic and Design Graph represents a specific generated model. All
design vocabulary. order of executed rules. Control structures enable design decisions. design knowledge is available within the graph nodes.

Filtering and mapping yields domain specific models such as
CAD, FEM and more.

mailto:felix.loeser@iils.de
mailto:rudolph@ifb.uni-stuttgart.de
mailto:rudolph@ifb.uni-stuttgart.de
mailto:rudolph@ifb.uni-stuttgart.de
mailto:rudolph@ifb.uni-stuttgart.de

	Folie 1

